AQA
General Certificate of Education
Advanced Level Examination
January 2010

Mathematics

MFP3

Unit Further Pure 3

Tuesday 19 January 2010 9.00 am to 10.30 am

For this paper you must have:

- a 12-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MFP3.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 The function $y(x)$ satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(x, y)
$$

where

$$
\mathrm{f}(x, y)=x \ln (2 x+y)
$$

and

$$
y(3)=2
$$

(a) Use the Euler formula

$$
y_{r+1}=y_{r}+h \mathrm{f}\left(x_{r}, y_{r}\right)
$$

with $h=0.1$, to obtain an approximation to $y(3.1)$, giving your answer to four decimal places.
(b) Use the improved Euler formula

$$
y_{r+1}=y_{r}+\frac{1}{2}\left(k_{1}+k_{2}\right)
$$

where $k_{1}=h \mathrm{f}\left(x_{r}, y_{r}\right)$ and $k_{2}=h \mathrm{f}\left(x_{r}+h, y_{r}+k_{1}\right)$ and $h=0.1$, to obtain an approximation to $y(3.1)$, giving your answer to four decimal places.

2 (a) Given that $y=\ln (4+3 x)$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(b) Hence, by using Maclaurin's theorem, find the first three terms in the expansion, in ascending powers of x, of $\ln (4+3 x)$.
(c) Write down the first three terms in the expansion, in ascending powers of x, of $\ln (4-3 x)$.
(d) Show that, for small values of x,

$$
\ln \left(\frac{4+3 x}{4-3 x}\right) \approx \frac{3}{2} x
$$

3 (a) A differential equation is given by

$$
x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x
$$

Show that the substitution

$$
u=\frac{\mathrm{d} y}{\mathrm{~d} x}
$$

transforms this differential equation into

$$
\begin{equation*}
\frac{\mathrm{d} u}{\mathrm{~d} x}+\frac{2}{x} u=3 \tag{2marks}
\end{equation*}
$$

(b) Find the general solution of

$$
\frac{\mathrm{d} u}{\mathrm{~d} x}+\frac{2}{x} u=3
$$

giving your answer in the form $u=\mathrm{f}(x)$.
(c) Hence find the general solution of the differential equation

$$
x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2 \frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x
$$

giving your answer in the form $y=\mathrm{g}(x)$.

4 (a) Write down the expansion of $\sin 3 x$ in ascending powers of x up to and including the term in x^{3}.
(b) Find

$$
\lim _{x \rightarrow 0}\left[\frac{3 x \cos 2 x-\sin 3 x}{5 x^{3}}\right]
$$

5 It is given that y satisfies the differential equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}+2 y=2 \mathrm{e}^{-2 x}
$$

(a) Find the value of the constant p for which $y=p x \mathrm{e}^{-2 x}$ is a particular integral of the given differential equation.
(b) Solve the differential equation, expressing y in terms of x, given that $y=2$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ when $x=0$.

6 (a) Explain why $\int_{1}^{\infty} \frac{\ln x^{2}}{x^{3}} \mathrm{~d} x$ is an improper integral.
(b) (i) Show that the substitution $y=\frac{1}{x}$ transforms $\int \frac{\ln x^{2}}{x^{3}} \mathrm{~d} x$ into $\int 2 y \ln y \mathrm{~d} y$. (2 marks)
(ii) Evaluate $\int_{0}^{1} 2 y \ln y \mathrm{~d} y$, showing the limiting process used. (5 marks)
(iii) Hence write down the value of $\int_{1}^{\infty} \frac{\ln x^{2}}{x^{3}} \mathrm{~d} x$.
(1 mark)

7 Find the general solution of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+4 y=8 x^{2}+9 \sin x \tag{8marks}
\end{equation*}
$$

8 The diagram shows a sketch of a curve C and a line L, which is parallel to the initial line and touches the curve at the points P and Q.

The polar equation of the curve C is

$$
r=4(1-\sin \theta), \quad 0 \leqslant \theta<2 \pi
$$

and the polar equation of the line L is

$$
r \sin \theta=1
$$

(a) Show that the polar coordinates of P are $\left(2, \frac{\pi}{6}\right)$ and find the polar coordinates of Q. (5 marks)
(b) Find the area of the shaded region R bounded by the line L and the curve C. Give your answer in the form $m \sqrt{3}+n \pi$, where m and n are integers.

END OF QUESTIONS

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page

